ADRENERGIC RECEPTORS <u>Def.</u>: Adrenoceptors are membrane-bound receptors coupled with G proteins, specific to adrenaline, noradrenaline & their antagonists. Location: - CNS (central), - Nerve endings (presynaptic), - Effector organs (postsynaptic). # **ADRENERGIC RECEPTORS** # **Q1** receptor <u>Sites:</u> Mainly effector organs (postsynaptic). <u>Mechanism:</u> G_a -Protein $\rightarrow \uparrow PLC \rightarrow \uparrow IP_3 \& DAG <math>\rightarrow \uparrow Ca^{++} \rightarrow response$ **Actions:** (Fight and fright) - Contraction of pilomotor muscle → erection of hair - Contraction of dilator pupilae muscle \Rightarrow active mydriasis - Generalized vasoconstriction $\rightarrow \uparrow$ TPR $\rightarrow \uparrow$ Bl. Pr. - Viscid salivation - Spasm in sphincters of GIT and UB - Ejaculation & contraction of prostatic capsule - Contraction of pregnant uterus <u>Selective agonist:</u> phenylephrine <u>Selective antagonist:</u> prazosin 5 # **ADRENERGIC RECEPTORS** # Occupation (Control of the Control o <u>Sites:</u> Central; presynaptic; postsynaptic. <u>Mechanism</u>: G_i -Protein $\rightarrow \downarrow AC \rightarrow \downarrow cAMP \rightarrow \downarrow Ca^{++} \rightarrow response$ Actions: (Calming) - ↓CNS → sedation & ↓ sympathetic centers. - Presynaptic: ↓release of NA \downarrow ACH in enteric ganglia \rightarrow relaxation of GIT - Kidney: \downarrow release of renin $\rightarrow \downarrow$ Bl. Pr. - Pancreas: ↓release of insulin - Adipose tissue: \downarrow lipolysis $\rightarrow \downarrow$ Bl. F.F.A. Selective agonist: clonidine Selective antagonist: yohimbine # **ADRENERGIC RECEPTORS** # <u>B1 receptor</u> **<u>Sites:</u>** Central; postsynaptic. <u>Mechanism:</u> G_s -Protein $\rightarrow \uparrow AC \rightarrow \uparrow cAMP \rightarrow Protein kinase-A + open Calcium$ Channel $\rightarrow \uparrow$ Ca⁺⁺ $\rightarrow \uparrow$ response Actions: (Alertness) - ↑CNS → anxiety - ↑heart → ↑Cardiac output - Kidney: 个renin - Adipose tissue: 个lipolysis <u>Selective agonist:</u> dobutamine <u>Selective antagonist:</u> atenolol _ # **ADRENERGIC RECEPTORS** # B2 receptor <u>Sites:</u> Central; presynaptic; postsynaptic. <u>Mechanism</u>: G_s -Protein → \uparrow AC→ \uparrow cAMP → \downarrow Myosin light chain kinase in SM. muscle, Bl.Vs, Bronchi, UB, Uterus → relaxation Actions: (For muscle) - Generalized VD especially for Sk. muscles - Bronchodilation - Uterus, UB & GIT walls: relaxation -↑glycogenolysis in liver & Sk. Muscles -↑release of insulin CAMP ATP CAMP ATP CAMP (active) (inactive) Relaxation β₂-agonist Selective agonist: Salbutamol Selective antagonist: butoxamine ## **ADRENERGIC RECEPTORS** # B₃ receptor <u>Sites:</u> Postsynaptic, mainly in adipose tissue. <u>Mechanism:</u> G_s -Protein $\rightarrow \uparrow AC \rightarrow \uparrow cAMP$ Actions: (For catabolism) - -↑lipolysis - Thermogenesis Selective agonist: Octopamine Selective antagonist: -- a # **CLASSIFICATION OF SYMPATHETIC DRUGS** #### **SYMPATHOMIMETICS** (drugs which stimulate adrenergic receptors & neurons and produce actions similar to those of sympathetic nerve stimulation) #### **SYMPATHOLYTICS** (drugs which block adrenergic receptors & neurons and produce actions similar to those of sympathetic nerve inhibition) # **SYMPATHOMIMETICS** A. According to nature: Natural (in the body): As adrenaline, noradrenaline & dopamine Synthetic: As ephedrine, amphetamine, isoprenaline, ... ### B. According to chemical structure: #### Catecholamines: - Have catechol nucleus - As adrenaline, noradrenaline, isoprenaline, dopamine, dobutamine, hexoprenaline, α -methyl noradrenaline, ... #### Non-catecholamines: - Do not have catechol nucleus - As ephedrine, amphetamine, ... # C. According to mechanism of action: ### **Direct stimulation of adrenoceptors:** As adrenaline, noradrenaline, isoprenaline,... ### Indirect by: - Release of NA as amphetamine - Inhibiting uptake-1 of NA as reboxetine - Inhibiting MAO as phenelzine - Inhibiting COMT as entacapone Dual or mixed mechanism (direct + indirect): As ephedrine 11 ## D. According to receptor selectivity: ### $\rightarrow \alpha$ -receptor agonists: - Selective α_1 agonists: as phenylephrine & methoxamine - Selective α_{2} agonists: as clonidine & $\alpha\text{-methyl NA}$ - Non-selective $\alpha_{\rm 1}$ + $\alpha_{\rm 2}$ agonists: as oxymetazoline ### β-receptor agonists: - Selective β_1 agonists: as dobutamine - Selective β_2 agonists: as salbutamol - Selective β_3 agonists: as octopamine - Non-selective $\beta_1 + \beta_2 + \beta_3$ agonists: as isoprenaline #### $\underline{\hspace{0.2cm}}$ $\alpha+\beta$ receptor agonists: - α_1 + α_2 + β_1 + β_2 + β_3 agonists: as adrenaline - α_1 + α_2 + β_1 + β_3 agonists: as NA - α_1 + β_1 +D agonists: as dopamine # Please, if possible, try to stick to the following scheme to discuss a drug or a group of drugs: # NAME of the Drug or Group | I) ot • | a few words about source and important properties. | |----------|--| | | a lew words about source and important properties. | - Classification (position): if a group (classification), if a drug (position). - Pharmacokinetics: absorption, distribution, metabolism & excretion. - Pharmacodynamics: mechanism of action, action (therapeutic & adverse). - Pharmacotherapeutics: indications, contra-indications, precautions. - ☐ Drug toxicity: if any, manifestations & approach. - Drug Preparations: brand names. 13 # **ADRENALINE** # **_**1<u>Def.:</u> Adrenaline or epinephrine is a natural catecholamine present in adrenal medulla and some neurons in CNS. Endogenously, it acts as a chemical transmitter at postganglionic sympathetic nerves except those of sweat glands (ACh). It is unstable, oxidized in air or light \rightarrow adrenochrome, red in color, toxic. Stable in blood due to presence of glutathione and ascorbate; reducing agents. Class. (Position): one of sympathomimetics. # Pharmacokinetics: - Not effective orally Given locally in epistaxis - Given by SC to lessen rate of absorption of other drugs - Given by inhalation in bronchial asthma - Given by intracardiac route for cardiac resuscitation - As all catecholamines, adrenaline does NOT pass BBB. - Neuronal uptake; - Metabolized by MAO and COMT enzymes → excreted in urine. # **ADRENALINE** # ☐Pharmacodynamics: -M.O.A.: Adrenaline acts by direct stimulation of all subtypes of adrenoceptors $(\alpha_{1,2} \& \beta_{1,2,3}).$ #### - Local actions: - Skin & m.m.: vasoconstriction (α) of SC and submucosal bl.vs. - Eye: decongestion; decrease synthesis of aqueous humor (α) $\rightarrow \downarrow$ IOP - Bronchi: dilation (β_2) & decongestion of bronchial mucosa (α). #### -Systemic actions: - CNS: anxiety (no/very mild stimulation) - Eye: <u>active</u> mydriasis (α_1) - Heart: (β_1) +ve inotropic; +ve chronotropic; +ve dromotropic $\rightarrow \uparrow COP$. - Bl.Vs: skin, mm, renal (α_1 mainly) \rightarrow VC \rightarrow \uparrow TPR. sk.m, mesenteric (β_2 mainly) \rightarrow VD \rightarrow \downarrow TPR coronary (β_2) \rightarrow dilation - Bl.pr: hypertension (systolic) Mydriasis, 15 # **ADRENALINE** - GIT: viscid salivation (α_1) spasm of sphincters (α_1) relaxation of the wall (β_2) - UB: spasm of sphincter and trigone (α_1) relaxation of the wall (*Detrusor urinae* muscle) (β_2) urine retention - Uterus: variable but relaxes nonpregnant uterus ($\beta_{\rm 2})$ - Sk. M: VD of skeletal vessels (β_2); \uparrow glycogenolysis (β_2) anti-fatigue effect - Anti-allergic effect: **physiological** antagonist to histamine - Endocrine: enhances release of cortisone. - Metabolic: hyperglycemia [\uparrow glycogenolysis in liver (β_2) & \downarrow insulin release (α_1) plus cortisone-mediated > insulin release (β_2)]; \uparrow lipolysis (β_1 & β_2). Bronchodilation # **ADRENALINE** # Pharmacotherapeutics: #### ☐Indications: - With local anethetics except cocaine (as it inhibits uptake-1 & MAO) - In epistaxis as haemostatic nasal pack - In open angle glaucoma as eye drops (as prodrug Di-pivalyl epinephrine; Dipivefrine) - Cardiac arrest - · Acute bronchial asthma - · Acute allergies and anaphylaxis - Acute hypoglycemia #### ☐ Contra-indications: - Around fingers & toes and in circumcision - Hypertension - Cardiac arrhythmia, thyrotoxicosis, digitalis & volatile general anesthesia. - MAO inhibitors #### ☐Precautions: Should be used under medical supervision. 17 # **NORADRENALINE** # □<u>Def.:</u> NA is a natural catecholamine present in all postganglionic sympathetic neurons (except sweat glands, in which transmitter is ACh), adrenal medulla (20%) and some neurons in CNS. # ☐ Pharmacology: - M.O.A.: NA acts by direct NON-selective stimulation of $\alpha_{1,2}$ mainly & little $\beta_{1,3}$ but NOT β_2 . - \triangleright **Actions & Uses :** as Adrenaline without β 2 effects and applications. # **ISOPRENALINE** # **□**<u>Def.:</u> Synthetic catecholamine; not present in the body. # □ Pharmacology: -M.O.A.: Isoprenaline acts by direct NON-selective stimulation of $\beta_{1,2,3}$ but NOT α -receptor. - Actions & Uses: as Adrenaline without α applications. # **EPHEDRINE** Ephedrine is a NON-catecholamine alkaloid obtained either <u>naturally</u> from *Ephedra vulgaris* plant and/or prepared <u>synthetically</u>. It is a sympathomimetic <u>as adrenaline **but with some differences**:</u> | | Epinephrine | Ephedrine | |---|---|--| | Nature | Natural catecholamine | Natural & synthetic NONcatecholamine | | Kinetics: Absorption Distribution Metabolism Duration | Not effective orally
CanNOT pass BBB
Rapidly by MAO & COMT
Short | Effective orally Pass BBB Not metabolized Long | | Dynamics:
MOA
Local action: | Direct | Dual | | Eye
Nose
Sympathetic actions: | Decongestion withOUT mydriasis
Decongestion | Decongestion + mydriasis Decongestion → rebound congestion | | Potency Onset Duration CNS actions: | Potent
Rapid
Short
No/Mild | Weaker
Slower
Longer
Potent CNS stimulant | | Uses | Acute attacks | Prophylaxis | | Adverse effects | Unwanted α & β | Unwanted α & β and CNS | 19 # **SYMPATHOLYTICS** # Alpha adrenoceptor blockers **<u>Def.:</u>** These are the drugs which antagonize the α -effects of adrenergic drugs. ### **Classification:** Sub-classified according to site of action into: #### A- Nonselective α -blockers - phentolamine & tolazoline - phenoxybenzamine #### B- Selective α₁-blockers - prazosin, doxazosin & terazosin ### C- Selective α₂-blockers - yohimbine #### D- Other drugs with α -blocking effect - ergot alkaloids #### **General uses:** - hypertension - peripheral vascular disease 21 # **Ergot alkaloids** **Def.:** alkaloids obtained from *Ergot* which is a fungus grows on Rye. **Members:** ergotamine, ergotoxine and ergometrine ### **Pharmacodynamics:** - -M.O.A.: direct blocking of α -receptors - Actions: - although α -blockers that should produce vasodilation, yet they have more powerful direct SPASMOGENIC action with net result of <u>vasoconstriction</u>, (particularly, ergotamine & ergotoxin). - oxytocic effect (particularly ergometrine). - HYDROGENATION of ergot leads to \uparrow α -blocking effect & \downarrow spasmogenic effect on bl.vs., e.g., dihydroergotoxine (hydergine) \rightarrow VASODILATION. - METHYLATION of ergot leads to 个 spasmogenic oxytocic action on the uterus, e.g. methylergometrine. ### Therapeutic uses: - ergotamine & ergotoxin: Migraine, better taken plus caffeine (Cafergot)® - ergometrine: Uterine inertia, retained placenta, postpartum hemorrhage, to help involution of the uterus & uterine prolapse. #### **Contra-indications:** - peripheral vascular disease - hypertension - pregnancy - liver & kidney disease # Beta adrenoceptor blockers **<u>Def.:</u>** These are the drugs which antagonize the β -effects of adrenergic drugs. ### **Classification:** ### According to receptor selectivity into: #### A- Nonselective β-blockers Propranolol, Pindolol, Timolol - Oxprenolol, Nadolol ## B- Selective β_1 -blockers (Cardio-selective) - Atenolol, Acebutolol - Metoprolol, Bisoprolol #### C- Selective β₂-blockers - Butoxamine #### D- β-blockers with vasodilating activity - Labetalol, Carvedilol, Nebivolol... #### **According to lipid solubility into:** #### A- Lipophilic β-blockers - Propranolol, Oxprenolol, Metoprolol → pass BBB with CNS side actions #### B- Lipophobic β-blockers - Atenolol, Nadolol → don't pass BBB with minimal CNS effect 23 ### **Indications:** - Angina pectoris (caused by cardiac overload). - Cardiac tachyarrhythmia - Thyrotoxicosis - Hypertension - Varices & aneurysm - Open angel glaucoma (Timolol) - Anxiety and panic disorders - Prophylaxis against migraine ### **Contra-indications:** - Prinzmetal's angina (caused by coronary spasm or stenosis). - Heart failure - Hypotension - Diabetes mellitus - Bronchial asthma - Peripheral vascular disease - Alone (withOUT α -blockers) in pheochromocytoma - Sudden stop of treatment with β -blockers \rightarrow severe relapse ### Precautions: - Adjustment of doses of co-administered drugs. - Monitoring lipid profile, glucose and K⁺ levels. # Adrenergic NEURON blockers **Def.:** These are the drugs which interfere with <u>synthesis</u> or <u>storage</u> or <u>release</u> of adrenergic neurotransmitters. # **Synthesis inhibitors** Members: $-\alpha$ -methyltyrosine (metyrosine), α -methyldopa (Aldomet) #### **Pharmacodynamics:** #### M.O.A.: - ightharpoonup lpha-methyltyrosine blocks the synthesis of NE by inhibiting tyrosine hydroxylase. - α-methyldopa is an inhibitor of aromatic <u>L-amino acid decarboxylase</u>, and is—like dopa itself—successively decarboxylated and hydroxylated in its side chain to form the putative "false neurotransmitter", methylnorepinephrine. - Actions: - > Sympatholytic. # Therapeutic uses: - \triangleright α -methyldopa can be used in pheochromocytoma - \sim α -methyldopa is useful as central antihypertensive as the formed α -methylNE is a selective α_2 -receptor agonist that \downarrow central sympathetic outflow, \downarrow release of NE & \downarrow release of renin; and it is safe on the fetus during pregnancy. # Storage inhibitors or depletors <u>Member:</u> - Reserpine (Serpasil), it is an alkaloid from Rauwolfia serpentina plant. ### **Pharmacodynamics:** #### M.O.A.: - ➤ Reserpine irreversibly inhibits granular Mg⁺⁺-dependent ATPase that is responsible for granular uptake & storage of NA & dopamine. By the occurred inhibition the neurotransmitters are hydrolyzed by MAO & COMT leading to depletion of catecholamine stores within CNS & PNS. - > The same occurs for 5-HT stores. #### - Actions: - Sympatholytic giving the upper hand to parasympathetic arm. - Major tranquilizer, due to depletion of the excitatory stores of NA & 5-HT. #### Therapeutic uses: - Hypertension - Psychosis #### Contra uses: - Psychic depression - Parkinsonism - Peptic ulcer 27 # Release inhibitors Member: - Guanethidine (Ismelin), Guanadrel & Bretylium ### Pharmacodynamics: #### M.O.A.: - ➤ Guanethidine acts at the sympathetic <u>neuro-effector junction</u> by inhibiting or interfering with the release of NE, NOT at the brain (canNOt pass BBB) or adrenal medulla. - It is <u>taken up by NE transporters</u>; once inside the terminal it blocks the process of exocytosis & release of NE in response to arrival of an action potential. - Furthermore it is being gradually concentrated in vesicles, <u>replacing NE</u>. This leads to a gradual depletion of NE stores in the nerve endings. #### - Actions: - Sympatholytic $\, \rightarrow \,$ AS IF $\, \rightarrow \,$ parasympathomimetic #### Indications: - Hypertension - Glaucoma as eye drops #### **Contraindications:** - Pheochromocytoma - Peptic ulcer # **CHOLINERGIC RECEPTORS** <u>**Def.**</u>: Cholinoceptors are membrane bound receptors <u>either</u> coupled with G-proteins or with ligand-gated ion channels, specific to ACh & their antagonists. #### Types: ## Muscarinic (M) or Peripheral cholinergic receptors: | TYPE | LOCATION | MECHANISM | AGONIST | ANTAGONISTS | |------|--|---|---------|-------------------------| | M1 | Gastric parietal cells,
CNS & presynaptic | $G_q \rightarrow \uparrow PLC \rightarrow \uparrow IP_3 \&$
DAG $\rightarrow \uparrow Ca^{++}$ | ACh | Atropine
Pirenzepine | | M2 | Cardiac M., Sphincters, & presynaptic | $G_i \rightarrow \downarrow AC \rightarrow \downarrow cAMP$ | ACh | Atropine
Gallamine | | M3 | Smooth M., Exocrine G.,
Endothelium & CNS | $G_q \rightarrow \uparrow PLC \rightarrow \uparrow IP_3 \&$
DAG $\rightarrow \uparrow Ca^{++}$ | ACh | Atropine | # Nicotinic (N) or Central cholinergic receptors: | TYPE | LOCATION | MECHANISM | AGONIST | ANTAGONISTS | |---------|---|--------------------------------------|---------|----------------| | N_N | Autonomic ganglia,
adrenal medulla & CNS | Gated to Na ⁺ ion channel | ACh | Nicotine LD | | N_{M} | Skeletal muscle (motor end plate) | Gated to Na ⁺ ion channel | ACh | d-Tubucurarine | # **CLASSIFICATION OF PARASYMPATHETIC DRUGS** #### **CHOLINERGIC STIMULANTS** #### **CHOLINERGIC DEPRESSANTS** (drugs which stimulate cholinergic receptors & neurons and produce actions similar to those of parasympathetic nerve stimulation) (drugs which block cholinergic receptors & neurons and produce actions similar to those of parasympathetic nerve inhibition) #### **CHOLINERGIC STIMULANTS** **Direct stimulants,** they directly stimulate M & N receptors: ### **Choline esters:** - Natural: ACh - Synthetic: Methacholine, Carbachol, Bethanechol # Choline alkaloids: Muscarine, Nicotine, Arecoline & Pilocarpine **B. Indirect stimulants,** They \downarrow ChE \rightarrow Accumulation of endogenous Ach Edrophonium, Physostigmine, Neostigmine, ... Reversible: Irreversible: Organophosphates as Echothiophate,, 31 # Natural CHOLINE ESTERS **ACETYLCHOLINE** **Def.:** Natural choline ester present endogenously. It is the chemical transmitter at: All postganglionic parasympathetic nerves - Exceptional postg. symp. nerve to sweat glands - All autonomic ganglia, parasymp. & sympathetic - Neuromuscular junction - **CNS** #### Pharmacokinetics: - ACh is highly ionized → of low lipid solubility - → canNOT pass BBB & distributed extracellularly. - Not absorbed orally - Metabolized by ChE into choline & acetic acid. #### Pharmacodynamics: - M.O.A.: direct activation of both M & N receptors. - Actions: Acc. to the type of activated receptor, Ach has two types of actions: Muscarinic actions Nicotinic actions Organ EXCEPTION **Parasympathetic** #### A) Muscarinic actions: - ↑ Constrictor pupillae muscle (M3) → miosis - ↑ ciliary muscle → accommodation of the eye to near vision - ↓ IOP via wide angle filteration - 个 lacrimation - conjuncytival vasodilation - \downarrow S-A node \rightarrow -ve chronotropic \rightarrow bradycardia (M2) - \downarrow A-V node \rightarrow -ve dromotropic \rightarrow delays conduction to ventricles - ↑ non-innervated M3 receptors on endothelium → release of EDRFs as NO → vasodilation → ↓TPR - hypotension due to bradycardia and low TPR - Bronchospasm & increased bronchial secretion (M3) - ↑ peristalsis, ↑ secretions (M3), ↓relax sphincters (M2) → defecation 33 -↑ Detrusor urinae muscle (M3), ↓relax sphincter (M2) → urination -↑ myometrium (M3) -↑ glandular secretions including thermoregulatory sweat glands (M3). ### **B) Nicotinic actions:** - ightharpoonup Sk. M.: ightharpoonup N_M receptor ightharpoonup contraction, twitches & convulsions - ➤ <u>Aut. Ganglia & Adr. medulla:</u> ↑ N_N receptor > hypertension (<u>if alone</u>) ### Therapeutic uses: ACh is not used clinically as it is: - Ineffective orally - of short duration - nonselective # **Synthetic CHOLINE ESTERS** #### Members: METHACHOLINE, CARBACHOL & BETHANECHOL. **<u>Def.:</u>** Synthetic quaternary amm. Compounds with the following characters: - Lipophobic, doNOT pass BBB & distributed only extracellularly. - Effective orally & parenterally (SC), less metabolized by ChE → longer - With some selectivity #### Dynamics, Kinetics & uses compared to ACh: | | Acetylcholine | Methacholine | Carbachol | Bethanechol | |--------------------|--------------------------|---|---|---| | Nature | Natural | Synthetic | Synthetic | Synthetic | | Metabolized by | Both ChEs, true & pseudo | True only | Not | Not | | Orally | Not effective | Irregular | Complete | Complete | | Duration | Short | Longer | Longer | Longer | | Muscarinic actions | ++++ | ++++ | ++++ | ++++ | | Nicotinic actions | ++++ | ± | ++++ | Devoid | | Selectivity | No | CVS | Eye, GIT, UB | GIT, UB | | Therapeutic uses | Not used clinically | Tachycardia
Peripheral
vascular disease | Glaucoma
Postoperative
Paralytic ileus &
urine retention | Postoperative
Paralytic ileus &
urine retention | 35 ## **CHOLINE ALKALOIDS** # Members: MUSCARINE, ARECOLINE & PILOCARPINE. **<u>Def.:</u>** Natural tertiary amines, NOT esters, therefore NOT metabolized by ChEs. #### Muscarine: - Alkaloid isolated from toxic Mushrooms (Amanita muscaria). - NOT present endogenously - Selective only on M-receptors and has muscarinic actions of ACh. ### Arecoline: - Alkaloid isolated from Areca nut. - Has <u>both</u> nicotinic & muscarinic actions especially on GIT with CNS stimulation - Uses as vermifuge & in folk medicine as memory enhancer chewing gum. #### Pilocarpine: - Alkaloid from *Pilocarpus jaborandi*. - Has mainly muscarinic action especially on the eye & exocrine glands - Uses: - Miotic eye drops for ttt of glaucoma & to remove adhesions between iris and lens alternatively with mydriatics - o As sialagogue in ttt of xerostomia - o As diaphoretic in ttt of fever - As hair tonic in promotion of hair growth (Tonoscalpine lotion)[®] # INDIRECT CHOLINERGIC STIMULANTS ANTICHOLINESTERASES <u>Def.:</u> These are the drugs which deactivate ChEs resulting in accumulation of endogenous ACh which, in turn, produces its actions, both M & N. Deactivation of ChEs may be <u>reversible</u> or <u>irreversible</u>; via occupation of the <u>anionic</u> <u>or/and esteratic</u> active sites of ChE. #### Reversible: - > Quaternary amm. alcohols: as Edrophonium: - Attach to the anionic site of ChE - Not a substrate for the enzyme, so not metabolized - Rapidly reversible, so of short duration (about 5 min.) - > Carbamate derivatives: as Physo- & Neostigmine - Attach to both sites of ChE, anionic and esteratic - Esters, so they are metabolized by the enzyme - Duration is up to 6 hs ## Irreversible: - Organophosphates: as Parathion, Echothiophate, - Attach to the esteratic site - Not metabolized - Their effect needs re-synthesis of new ChE 37 # **EDROPHONIUM (Tensilon®)** - Synthetic quaternary amm. Alcohol, rapidly & reversibly deactivates ChE by attaching to its anionic site. - Its action is more selective on skeletal muscle than other ChEs. - Given by IV injection giving immediate action but of short duration (minutes). - It was used in diagnosis of <u>myasthenia gravis</u> [but bradycardia is a major concern]. # **PHYSOSTIGMINE & NEOSTIGMINE** | | Physostigmine (Eserine) | Neostigmine (Prostigmine) | |----------|--|---| | Nature | Natural, tertiary amine alkaloid from
Calabar beans | Synthetic, quaternary amm. compound | | Kinetics | Absorbed orally, passes BBB, rapidly metabolized by ChE, short duration | Irregularly absorbed orally, cannot pass BBB, slowly metabolized by ChE, longer duration | | Dynamics | Reversible anti-ChE More specific on the eye → miosis CNS stimulation | Reversible anti-ChE More specific on GIT & UB $\to \uparrow$ wall, \downarrow sph. Direct sk. muscle stimulant effect No CNS stimulation | | Uses | As eye drops in: - Glaucoma - Counteract mydriatics - Alternatively with mydriatics to cut adhesions between iris & lens As IV injection in atropine poisoning | As IM, SC, PO (F < 5% of 15 mg tab) in: Myasthenia gravis (diagnosis & treatment) Postoperative paralytic ileus Postoperative urine retention Tachycardia As IV injection in curare poisoning | # **ORGANOPHOSPHOROUS COMPOUNDS** **<u>Def. & Members:</u>** Synthetic compounds with many applications, including: - Insecticides as Parathion & Malathion - Anthelmintics as Haloxon (Antinematode) & Metrifonate (Anti-Shistosoma) - War gases as Sarin, Tabun & Soman (OBSOLETE). - For Glaucoma as **Isoflurophate** eye ointment & **Echothiophate** eye drops. #### Pharmacokinetics: - Have high lipid solubility > rapidly absorbed from all sites; and well distributed. #### **Pharmacodynamics:** - They deactivate ChE by phosphorylating its esteratic site in an irreversible manner; this leads to accumulation of endogenous ACh which stimulate both M and N receptors. - Such irreversible effect ends by re-synthesis of new ChEs (butyryl ChE needs about 3 weeks; while acetyl ChE needs about 3 months) #### Ttt of organophsphate toxicity: - Atropine 1 mg/IV every 10 minutes till mydriasis, tachycardia & dry mouth; the patient should be kept atropinized for at least 48 hs to reverse muscarinic actions. - Nicotinic action on sk. M. is reversed by anticonvulsants as **Nembutal** or **Diazepam**. - ChE re-activators (Oximes) which are antidotes; as PAM (pyridine aldoxime methylchloride; pralidoxime), DAM (Di-acetyl-Monoxime); they are effective orally. PAM canNOT pass BBB while others can pass reactivating both peripheral & central ChEs. 39 ### **Indications of ACHEs:** - Myasthenia gravis - Glaucoma (Closed angle) - Counteraction of mydriatics - Alternatively with mydriatics to cut adhesions between iris & lens - Postoperative paralytic ileus - Postoperative urine retention - Tachycardia - Alzheimer's disease ### **Contra-indications of ACHEs:** - Conditions and drugs associated with INCREASED cholinergic activity (N & M). # **CHOLINERGIC DEPRESSANTS** ## A. Cholinergic RECEPTOR blockers: ### 1. Muscarinic antagonists: - As atropine and its substitutes ### 2. Nicotinic antagonists: - Ganglionic blockers: as Hexamethonium - Neuromuscular blockers: - Competitive: as d-Tubucurarine - Depolarizing: as Succinylcholine # B. Cholinergic NEURON blockers: - Drugs inhibit synthesis of ACh: as Hemicholinium - · Drugs inhibit storage of ACh: as Vesamicol - Drugs inhibit release of ACh: as Botulinium toxin They are used mainly for their skeletal muscle relaxant effects. 41 # **Muscarinic antagonists** **<u>Def.:</u>** These are the drugs which compete with ACh for its M-receptors. **Members:** They are classified in TWO ways: #### According to nature: - Natural alkaloids: as Atropine, Hyoscine - Synthetic atropine substitutes: - Mydriatics as Homatropine - Antisecretory as Pirenzepine - Antispasmodics as Propantheline - Antiasthmatics as Ipratropium - Antiparkinsonian as Benztropine - For urinary incontinence as Oxybutynin ### According to selectivity: - Nonselective: as atropine (Block all M-receptors, M1-M3) - <u>Selective</u>: M1 antagonist as Pirenzepine M2 antagonist as Gallamine # **ATROPINE** <u>Def.:</u> It is a natural tertiary amine alkaloid obtained from *Atropa belladonna* plant. **Pharmacokinetics:** - Well absorbed orally, parenterally & from mucous membranes - Distributed all over the body extra- & intracellularly - Passes BBB, so it has CNS effects - Metabolized in the liver by atropinase-hydrolysis reaction into tropic acid & tropine base; & partly excreted unchanged in urine. Acidification of urine <u>increases</u> atropine excretion. ### **Pharmacodynamics:** -M.O.A.: direct blocking of M-receptors (M1-M3) #### -Local actions: - Eye: <u>Passive</u> mydriatic (paralysis of *C. pupillae* m.) Cycloplegic (paralysis of ciliary m): - \rightarrow close canal of Schlemm $\rightarrow \uparrow IOP$. - → loss of accommodation to near vision **↓**lacrimation - Skin & mucous membranes: local anodyne 43 #### - Systemic peripheral actions: - CVS: - Tachycardia, after initial bradycardia due to central stimulation of CIC - ↑ A-V conduction; +ve dromotropic - Vasodilation (secondary to overheating due to block of sweating), flushing & fever occur in large dose (atropine fever) - · Mild hypertensive - Resp. T: - Bronchodilation - Dry bronchial secretion, side effect in asthma; <u>Ipratropium</u> & <u>Tiotropium</u> are better as they has less effect on bronchial secretion. - GIT: - ↓ salivary secretion → xerostomia - ↓ gastric acid secretion; <u>Pirenzepine</u> & <u>Telenzepine</u> are better as they are more specific on M1 receptor. - Antispasmodic; **Propantheline** is better as more specific - Spasm of sphincters → constipation - UB: - Relax the wall - Spasm of sphincter & trigone - urine retention; **Emepronium** & **Oxybutynin** are more specific - Skin: - ↓ sweat secretion (anhidrosis) - -Systemic central actions: - Cortex: - Mainly CNS **stimulant** → restlessness, excitation, hallucinations, ... - M.O: - ↑ RC (analeptic) & CIC (explains initial bradycardia) - ↓ VC (anti-emetic), short duration (Hyoscine is better), unlike H₁ blockers which have long duration. - Basal G.: - $\downarrow \rightarrow$ anti-parkinsonian; **Benztropine** is more specific #### **Indications:** - Poisoning with cholinomimetic drugs - Ophthalmoscopic examination - Heart block - > Bronchial asthma - > Colic either intestinal or biliary or renal - Diarrhoea - Peptic ulcer - Urinary incontinence & cystitis - Hyperhydrosis - Vomition & motion sickness - Parkinsonism - Pre-anesthetic medication, to: - prevent respiratory depression (↑ RC) - prevent aspiration pneumonia (↓ salivary & bronchial secretion) - protect against cardiac depression (+ve chrono- & dromotropic effects) #### **Contra-indications:** - # Glaucoma # Tachycardia - # Constipation & paralytic ileus # Hypersensitivity to atropine - # Young (FF) and old (SPE, senile prostatic enlargement) patients ### Skeletal muscle STIMULANTS **<u>Def. & Members:</u>** These are drugs which stimulate skeletal muscle function and **used** in ttt of myasthenia gravis. - They include: - ACh and analogues acting on N_M-receptors (Studied previously). - AntiCholinesterases ### Skeletal muscle RELAXANTS Def.: These are drugs which inhibit skeletal muscle function and used in ttt of epilepsy and as pre-anesthetics before surgical operations. 47 # Neuro-Muscular blockers ### **COMPETITIVE** - They compete with ACh for N_M-receptors at motor end plate - They produce muscular relaxation withOUT initial stimulation - Their effect is antagonized by Anti-ChEs - Examples are: - d-tubocurarine, Atracurium, Cis-atra..., - Duration: up to 30 min (longer) - Adverse effects: - Histamine release - Bronchospasm - Hypotension - Contraindications: - Bronchial asthma - Myasthenia gravis - With aminoglycosides & quinolones ### **DEPOLARIZING** - They doNOT compete with Ach for \mathbf{N}_{M} receptors - They produce <u>initial stimulation</u> due to depolarization, followed by <u>depression</u> due to persistent depolarization (partial agonists) - Their effect is potentiated by anti-ChEs - Examples are: - Succinylcholine (Suxamethonium) - Duration: up to 15 min (shorter) - Adverse effects: - Initial twitches - Muscle fatigue - Hyperthermia & Hyperkalemia - Phase-2 block - Contraindications: - Peptic ulcer - Glaucoma - PseudoChE deficiency 49